正则表达式匹配

题目

https://leetcode-cn.com/problems/regular-expression-matching

https://leetcode-cn.com/problems/zheng-ze-biao-da-shi-pi-pei-lcof

解法

  1. 回溯法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public boolean isMatch(String text, String pattern) {
if (pattern.isEmpty()) return text.isEmpty();
boolean first_match = (!text.isEmpty() &&
(pattern.charAt(0) == text.charAt(0) || pattern.charAt(0) == '.'));

if (pattern.length() >= 2 && pattern.charAt(1) == '*'){
return (isMatch(text, pattern.substring(2)) ||
(first_match && isMatch(text.substring(1), pattern)));
} else {
return first_match && isMatch(text.substring(1), pattern.substring(1));
}
}
}
  1. DP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public boolean isMatch(String text, String pattern) {
boolean[][] dp = new boolean[text.length() + 1][pattern.length() + 1];
dp[text.length()][pattern.length()] = true;

for (int i = text.length(); i >= 0; i--){
for (int j = pattern.length() - 1; j >= 0; j--){
boolean first_match = (i < text.length() &&
(pattern.charAt(j) == text.charAt(i) ||
pattern.charAt(j) == '.'));
if (j + 1 < pattern.length() && pattern.charAt(j+1) == '*'){
dp[i][j] = dp[i][j+2] || first_match && dp[i+1][j];
} else {
dp[i][j] = first_match && dp[i+1][j+1];
}
}
}
return dp[0][0];
}
}
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×