题目
https://leetcode-cn.com/problems/regular-expression-matching
https://leetcode-cn.com/problems/zheng-ze-biao-da-shi-pi-pei-lcof
解法
- 回溯法
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| class Solution { public boolean isMatch(String text, String pattern) { if (pattern.isEmpty()) return text.isEmpty(); boolean first_match = (!text.isEmpty() && (pattern.charAt(0) == text.charAt(0) || pattern.charAt(0) == '.'));
if (pattern.length() >= 2 && pattern.charAt(1) == '*'){ return (isMatch(text, pattern.substring(2)) || (first_match && isMatch(text.substring(1), pattern))); } else { return first_match && isMatch(text.substring(1), pattern.substring(1)); } } }
|
- DP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| class Solution { public boolean isMatch(String text, String pattern) { boolean[][] dp = new boolean[text.length() + 1][pattern.length() + 1]; dp[text.length()][pattern.length()] = true;
for (int i = text.length(); i >= 0; i--){ for (int j = pattern.length() - 1; j >= 0; j--){ boolean first_match = (i < text.length() && (pattern.charAt(j) == text.charAt(i) || pattern.charAt(j) == '.')); if (j + 1 < pattern.length() && pattern.charAt(j+1) == '*'){ dp[i][j] = dp[i][j+2] || first_match && dp[i+1][j]; } else { dp[i][j] = first_match && dp[i+1][j+1]; } } } return dp[0][0]; } }
|